设双曲线H: -=1(a>0,b>0)满足如下条件:①ab=;②直线l过右焦点F,斜率为,交y轴于点P,线段PF交H于Q,且|PQ|∶|QF|=2∶1.求双曲线的方程.
已知圆和定点,由圆外一点向圆引切线,切点为,且满足, (Ⅰ)求实数间满足的等量关系; (Ⅱ)求线段长的最小值.
如图,在棱长为1的正方体中. (Ⅰ)求异面直线与所成的角; (Ⅱ)求证平面⊥平面.
某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是侧面全等的四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图. (Ⅰ)求该安全标识墩的体积; (Ⅱ)证明:直线BD平面PEG.
求过两直线和的交点,且满足下列条件的直线的方程. (Ⅰ)和直线垂直; (Ⅱ)在轴,轴上的截距相等.
(满分12分) 已知二次函数满足:,且的 解集为 (1)求的解析式; (2)设,若在上的最小值为-4,求的值.