设,(1)若,为与的夹角,求。(2)若与夹角为60o,那么t为何值时的值最小?
如图,在梯形ABCD中,AB∥CD,,,平面平面,四边形是矩形,,点在线段上。 (1)求证:平面; (2)当为何值时,∥平面?写出结论,并加以证明; (3)当EM为何值时,AM⊥BE?写出结论,并加以证明。
【改编】在正四棱柱中,已知底面的边长为2,点P是的中点,且. (1)求的长; (2)求点到平面的距离.
【原创】(1),已知:,且满足,求的最小值; (2),已知:,且满足,求的最大值.
如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE. (1)求证:AB∥平面CDE; (2)求证:平面ABCD⊥平面ADE.
光线从点A(2,3)射出,若镜面的位置在直线上,反射线经过 B(1,1),求入射光线和反射光线所在直线的方程,并求光线从A到B所走过的路线长