已知上是减函数,且。(1)求的值,并求出和的取值范围。(2)求证。(3)求的取值范围,并写出当取最小值时的的解析式。
已知以点为圆心的圆与轴交于点、,与轴交于点、,其中为原点。 (Ⅰ)求的面积; (Ⅱ)设直线与圆交于点,若,求圆的方程。
已知圆C经过,两点,且在y轴上截得的线段长为,半径小于5。 (Ⅰ)求圆C的方程; (Ⅱ)若直线∥,且与圆C交于点,,求直线的方程。
如图组合体中,三棱柱的侧面是圆柱的轴截面,是圆柱底面圆周上不与重合一个点。 (Ⅰ)求证:无论点如何运动,平面平面; (Ⅱ)当点是弧的中点时,求四棱锥与圆柱的体积比。
如图,在正四棱锥中,,点在棱上。 (Ⅰ)问点在何处时,,并加以证明; (Ⅱ)求二面角的余弦值。
设函数=是奇函数,其中,,。 (Ⅰ)求的值; (Ⅱ)判断并证明在上的单调性。