,定点F(10,4),对于x轴上移动的点P(t,0)作一折线FPQ,使,若折线FPQ的PQ部分与正方形ABCD的边界有公共点,(1)求:B、D坐标;(2)求t的取值范围.
(本题12分)在△ABC中,求证:
(本题10分)a,b,c为△ABC的三边,其面积S△ABC=12,bc=48,b-c=2,求a.
已知定义域为R的函数是奇函数.(1)求的值; (2)证明在上为减函数.(3)若对于任意,不等式恒成立,求的范围.
(本小题满分12分) 已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).(1)求函数h(x)的定义域;(2)判断h(x)的奇偶性,并说明理由;(3)若f(3)=2,求使h(x)>0成立的x的集合.
已知函数f(x)=x+2ax+2, x.(1)当a=-1时,求函数的最大值和最小值;(2) 若y=f(x)在区间 上是单调 函数,求实数 a的取值范围.