已知椭圆的中心在坐标原点,焦点在x轴上,它的一个焦点为F,M是椭圆上的任意点,|MF|的最大值和最小值的几何平均数为2,椭圆上存在着以y=x为轴的对称点M1和M2,且|M1M2|=,试求椭圆的方程
(本小题满分10分)选修4-5:不等式选讲(I)已知都是正实数,求证:;(II)设函数,解不等式.
已知A、B是圆上满足条件的两个点,其中O是坐标原点,分别过A、B作轴的垂线段,交椭圆于点,动点P满足.(1)求动点P的轨迹方程;(2)设S1和S2分别表示和的面积,当点P在x轴的上方,点A在x轴的下方时,求的最大值。
已知抛物线上一点M(1,1),动弦ME、MF分别交轴与A、B两点,且MA=MB。证明:直线EF的斜率为定值。
已知函数,(1)求的单调区间;(2)若,求在区间上的最值;
已知函数的图像过点,且在点M处的切线方程为(1)求函数的解析式;(2)求函数的单调区间。