已知数列{an}的前n项Sn=pn+q(p≠0,p≠1),求数列{an}是等比数列的充要条件.
已知:等差数列{}中,=14,前10项和. (1)求; (2)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.
已知函数. (1)求的最小正周期;(2)求的的最大值和最小值;(3)若,求的值.
钝角△ABC的三内角A、B、C所对的边分别为a、b、c,sinC=, (c-b)sin2A+bsin2B=csin2C,求角A、B、C.
已知向量=(6,2),=(-3,k),当k为何值时,有 (1),∥ ?(2),⊥ ?(3),与所成角θ是钝角 ?
对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”. (Ⅰ)若,,,数列、是否为“类数列”?若是,指出它对应的实常数,若不是,请说明理由; (Ⅱ)证明:若数列是“类数列”,则数列也是“类数列”; (Ⅲ)若数列满足,,为常数.求数列前2012项的和.并判断是否为“类数列”,说明理由.