椭圆的对称中心在坐标原点,一个顶点为,右焦点与点的距离为。(1)求椭圆的方程;(2)是否存在斜率的直线:,使直线与椭圆相交于不同的两点满足,若存在,求直线的倾斜角;若不存在,说明理由。
在中,角,,所对的边分别为,,,且满足. (1)若,求的面积; (2)若,求的最小值.
已知二次函数(为常数,)的一个零点是.函数,设函数. (Ⅰ)求的值,当时,求函数的单调增区间; (Ⅱ)当时,求函数在区间上的最小值; (Ⅲ)记函数图象为曲线C,设点是曲线C上不同的两点,点M为线段AB的中点,过点M作轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.
某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧BC的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计) (Ⅰ)设(弧度),将绿化带总长度表示为的函数; (Ⅱ)试确定的值,使得绿化带总长度最大.
已知数列的前项和为,且 (1)求数列的通项公式; (2)数列中,令, ,求证:.
如图,在四棱柱中,侧面⊥底面,,底面为直角梯形,其中∥,,,为中点. (1)求证:∥平面; (2)求锐二面角的余弦值.