(1)求动圆圆心的轨迹C;(2)过点T(-2,0)作直线l与轨迹C交于A、B两点,求一点,使得 是以点E为直角顶点的等腰直角三角形。
已知动圆过定点,且与直线相切.(1)求动圆的圆心的轨迹的方程;(2)若曲线上一点,是否存在直线与抛物线相交于两不同的点,使的垂心为.若存在,求直线的方程;若不存在,说明理由.
如图,弧是半径为的半圆,为直径,点为弧的中点,点和点为线段的三等分点,平面外一点满足,.(Ⅰ)证明:;(Ⅱ)已知点为线段上的点,且,求当最短时,直线和平面所成的角的正弦值.
在数列中,已知.(Ⅰ)求数列,的通项公式;(Ⅱ)设数列满足,前项和为,若对于所有的偶数均恒成立,求实数的取值范围.
已知分别为三个内角的对边,.(Ⅰ)求的值;(Ⅱ)若,求的最大值.
已知,函数.(Ⅰ)若函数在上单调,求实数的取值范围;(Ⅱ)若存在实数,满足,.求当变化时,的取值范围.