某电厂冷却塔外形是如图1-7-8所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′="14" m,CC′="18" m,BB′="22" m,塔高20 m.图1-7-8(1)建立坐标系并写出该曲线的方程;(2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14).
已知向量,,,设函数的部分图象如图所示,A为图象的最低点,B,C为图象与x轴的交点,且为等边三角形,其高为. (1)求的值及函数的值域; (2)若,且,求的值.
已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (1)求椭圆的方程; (2)设,过点作与轴不重合的直线交椭圆于,两点,连接,分别交直线于,两点,若直线、的斜率分别为、,试问:是否为定值?若是,求出该定值,若不是,请说明理由.
如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点. (1)求证:; (2)求二面角的平面角的正弦值.
设函数. (1)若不等式的解集,求的值; (2)若,求的最小值.
在等比数列中,. (Ⅰ)求数列的通项公式; (Ⅱ)设,且为递增数列,若,求证:.