某电厂冷却塔外形是如图1-7-8所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′="14" m,CC′="18" m,BB′="22" m,塔高20 m.图1-7-8(1)建立坐标系并写出该曲线的方程;(2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14).
已知函数y=cos2x+sinxcosx+1,x∈R. (1)当函数y取得最大值时,求自变量x的集合; (2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
作出函数y=|sinx|+|cosx|,x∈[0,π]的图象,并写出函数的值域.
如图,某地一天从6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b. (1)求这段时间的最大温差; (2)写出这段曲线的函数解析式.
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π)(x∈R)的最大值是1,其图象经过点M(,). (1)求f(x)的解析式;(2)已知α,β∈(0,),且,,求f(α-β)的值.
已知函数. (1)用“五点法”画出函数f(x)在[0,]上的简图; (2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=1,,b+c=3(b>c),求b,c的长.