4位同学参加某种形式的竞赛,竞赛规则:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得—100分;选乙题答对得90分,答错得—90分.若4位同学的总分为0,则这4位同学有多少种不同的得分情况?
如图,四棱锥中,底面是的菱形, 侧面是边长为2的正三角形,且与底面垂直,为的中点. (1)求证:平面; (2)求二面角的余弦值.
某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品. (1) 随机选取1件产品,求能够通过检测的概率; (2)随机选取3件产品,其中一等品的件数记为,求的数学期望; (3)随机选取3件产品,求这三件产品都不能通过检测的概率.
已知函数f(x)=sin2x+sinxcosx-(xÎR). (1)若,求f(x)的最大值; (2)在△ABC中,若A<B,f(A)=f(B)=,求 的值.
如图,F是抛物线的焦点,Q是准线与x轴的交点,直线经过点Q。 (Ⅰ)直线与抛物线有唯一公共点,求方程; (Ⅱ)直线与抛物线交于A、B两点; (i)设FA、FB的斜率分别为,求的值; (ii)若点R在线段AB上,且满足,求点R的轨迹方程。
设 (1)若在[1,上递增,求的取值范围; (2)求在[1,4]上的最小值