如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且,.(Ⅰ)求椭圆的标准方程;(Ⅱ)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由
已知关于的不等式<0的解集为,的解集为Q。 (Ⅰ)若,求集合; (Ⅱ)若,求正数的取值范围。
设函数,其中. (1)若,求a的值; (2)当时,讨论函数在其定义域上的单调性.
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.记改进工艺后,旅游部门销售该纪念品的月平均利润是(元). (1)写出与的函数关系式; (2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
在数列中,,,。 (Ⅰ)计算,,的值; (Ⅱ)猜想数列的通项公式,并用数学归纳法加以证明
设函数,曲线在点处的切线方程为7x-4y-12=0,求的解析式和.