已知双曲线的方程为,若直线截双曲线的一支所得弦长为5(I)求的值;(II)设过双曲线上的一点的直线与双曲线的两条渐近线分别交于,且点分有向线段所成的比为。当时,求为坐标原点)的最大值和最小值
(本小题满分l0分)选修4—5:不等式选讲已知,不等式的解集为M.(1)求M;(2)当时,证明:.
(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线的极坐标方程是,射线与圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
(本小题满分10分)选修4—1:几何证明选讲如图所示,为圆的切线, 为切点,,的角平分线与和圆分别交于点和.(1)求证 (2)求的值.
(本小题满分12分)设函数.(1)若函数在处有极值,求函数的最大值;(2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;②证明:不等式
(本小题满分12分)已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足,(若△ABC的顶点坐标为,则该三角形的重心坐标为.(1)求点C的轨迹E的方程;(2)若斜率为k的直线l与(1)中的曲线E交于不同的两点P、Q,且,试求斜率k的取值范围.