(I)求值;(II)求的值
如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若AB=BB1=2,求A1D与平面AC1D所成角的正弦值.
已知四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E,F分别是AB,AP的中点. (1)求证:AC⊥EF;(2)求二面角F-OE-A的余弦值.
现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为,命中得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中两次的概率;(2)求该射手的总得分X的分布列及数学期望E(X);(3)求该射手向甲靶射击比向乙靶射击多击中一次的概率.
盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字-1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(1)在一次试验中,求卡片上的数字为正数的概率;(2)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(3)在两次试验中,记卡片上的数字分别为X,η,试求随机变量X=X·η的分布列与数学期望E(X).
某次考试中,从甲,乙两个班各抽取10名学生的成绩进行统计分析,两班10名学生成绩的茎叶图如图所示,成绩不小于90分为及格.(1)从每班抽取的学生中各抽取一人,求至少有一个及格的概率;(2)从甲班10人中取两人,乙班10人中取一人,三人中及格人数记为X,求X的分布列和数学期望.