已知函数,试讨论此函数的单调性。
.将编号为1,2,3的三个小球随意放入编号为1,2,3的三个纸箱中,每个纸箱内有且只有一个小球,称此为一轮“放球”,设一轮“放球”后编号为i(i=1,2,3)的纸箱放入的小球编号为ai,定义吻合度误差为=|1-a1|+|2-a2|+|3-a3|。假设a1,a2,a3等可能地为1、2、3的各种排列,求⑴某人一轮“放球”满足=2时的概率。⑵的数学期望。
(本小题满分14分)已知函数().(Ⅰ)求函数的单调区间;(Ⅱ)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”.试问:函数是否存在“中值相依切线”,请说明理由.
(本小题满分13分)已知是单调递增的等差数列,首项,前项和为,数列是等比数列,首项(Ⅰ)求的通项公式。(Ⅱ)令的前n项和
(本小题满分12分)已知椭圆的焦点,过作垂直于轴的直线被椭圆所截线段长为,过作直线l与椭圆交于A、B两点.(I)求椭圆的标准方程;(Ⅱ)是否存在实数使,若存在,求的值和直线的方程;若不存在,说明理由.
(本小题满分12分).如图是某直三棱柱被削去上底后所得几何体的直观图、左视图、俯视图,在直观图中,M是BD的中点,左视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。(Ⅰ)求该几何体的体积;(Ⅱ)求证:EM∥平面ABC;