(本小题满分15分)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,已知AB=a,AC=2,AA1=1,点D在棱B1C1上,且B1D∶DC1=1∶3. (Ⅰ)证明:BD⊥A1C; (Ⅱ)若二面角B-A1D-B1的大小为60º,试求a的值.
甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只。乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个。请你根据提供的信息说明:(Ⅰ)第2年全县鱼池的个数及全县出产的鳗鱼总数。(Ⅱ)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?说明理由。(Ⅲ)哪一年的规模(即总产量)最大?说明理由。
已知数列满足:且.(Ⅰ)求,,,的值及数列的通项公式;(Ⅱ)设,求数列的前项和;
在四棱锥中,,,底面, ,直线与底面成角,点分别是的中点.(1)求二面角的大小;(2)当的值为多少时,为直角三角形.
如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G..(Ⅰ)求证:∥;(Ⅱ)求二面角的余弦值;(Ⅲ)求正方体被平面所截得的几何体的体积.