(Ⅰ)求数列的通项公式; (Ⅱ)记,求使成立的的最大值
已知函数, (Ⅰ)时,求的极小值;(Ⅱ)若函数与的图象在上有两个不同的交点,求的取值范围.
设(Ⅰ)若在上存在单调递增区间,求的取值范围;(Ⅱ)当时,在的最小值为,求在该区间上的最大值
为了在夏季降温和冬季供暖时减少能源损耗 ,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用 (单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值
已知函数(Ⅰ)若在区间上是增函数,求实数的取值范围;(Ⅱ)若是的极值点,求在上的最大值和最小值.
已知函数(,)为偶函数,若对于任意都有成立,且的最小值是为.将函数的图象向右平移个单位后,得到函数,求的单调递减区间,确定其对称轴。