某食品厂每天需用食品配料200千克,配料的价格为元/千克,每次进货需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(Ⅰ)当9天购买一次配料时,求该厂用于配料的保管费用P是多少元?(Ⅱ)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?
已知数列为等差数列,,数列满足,且.(1)求通项公式;(2)设数列的前项和为,试比较与的大小.
已知函数.(1)求函数的对称轴方程和单调递增区间;(2)若中,分别是角的对边,且,,求的面积.
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(Ⅰ)求的极值;(Ⅱ)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知数列的前项和为,且对任意的都有 ,(Ⅰ)求数列的前三项;(Ⅱ)猜想数列的通项公式,并用数学归纳法证明
将边长为米的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少米?方盒的最大容积为多少?