已知圆通过不同的三点,,和,且该圆在点处的切线的斜率等于1,求圆的方程.
如图,正四棱柱中,,点在上且,点是线段的中点 (Ⅰ)证明:平面; (Ⅱ)求二面角的正切值; (Ⅲ)求三棱锥的体积.
已知函数. (Ⅰ)求曲线在点处的切线方程; (Ⅱ)求函数在区间上的最大值和最小值.
已知函数. (1)求的单调区间; (2)若在处取得极值,直线y=m与的图像有三个不同的交点, 求m的取值范围。
.已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交椭圆于,两点. (Ⅰ)求椭圆的方程; (Ⅱ)当直线的斜率为1时,求的面积; (Ⅲ)若以为邻边的平行四边形是矩形,求满足该条件的直线的方程.
已知函数; (1)求函数在点处的切线方程; (2)求函数在上的最大值和最小值.