如图,以正方体的三条棱所在直线为坐标轴,建立空间直角坐标系.点在正方体的对角线上,点在正方体的棱上.(1) 当点为对角线的中点,点在棱上运动时,探究的最小值;(2) 当点为棱的中点,点在对角线上运动时,探究的最小值;(3) 当点在对角线上运动,点在棱上运动时,探究的最小值.由以上问题,你得到了什么结论?你能证明你的结论吗?
已知函数.若过点可作曲线的切线有三条,求实数的取值范围.
一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为,记. (1)分别求出取得最大值和最小值时的概率;(2)求的分布列及数学期望.
已知△ABC中,角A、B、C的对边为a,b,c,向量=,且. (1)求角C; (2)若,试求的值.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值? (Ⅲ)当时,设函数,若在区间上至少存在一个, 使得成立,试求实数的取值范围.
已知函数:. (1)证明:++2=0对定义域内的所有都成立; (2)当的定义域为[+,+1]时,求证:的值域为[-3,-2]; (3)若,函数=x2+|(x-) | ,求的最小值