已知椭圆:的两个焦点为,点 在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)记为坐标原点,过的直线与椭圆相交于两点,若的面积为,求直线的方程.
已知椭圆,过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线l交椭圆于A,B两点,交直线于点E,判断是否为定值,若是,计算出该定值;不是,说明理由.
设数列为等差数列,且;数列的前n项和为.(1)求数列,的通项公式;(2)若为数学的前n项和,求.
如图,在多面体中,四边形是正方形,AC=AB=1,.(1)求证:;(2)求二面角的余弦值的大小.
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为.(1)求甲至多命中2个且乙至少命中2个的概率;(2)若规定每投篮一次命中得3分,未命中得分,求乙所得分数的概率分布和数学期望.
已知向量,函数的最小正周期为.(1)求函数的单调增区间;(2)如果△ABC的三边所对的角分别为,且满足的值.