若,则;
如图,在四棱锥P—ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB//DC,∠BCD=90°,E为棱PC上异于C的一点,DE⊥BE(1)证明:E为PC的中点;(2)求二面角P—DE—A的大小
已知△ABC的内角A、B、C的对边分别为a、b、c,若求角A
(本小题满分12分)已知函数图像上点处的切线方程与直线平行(其中),(I)求函数的解析式;(II)求函数上的最小值;(III)对一切恒成立,求实数t的取值范围.
(本小题满分12分)已知椭圆的焦距为4,且与椭圆有相同的离心率,斜率为的直线经过点,与椭圆交于不同两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)当椭圆的右焦点在以为直径的圆内时,求的取值范围.
(本小题满分12分)已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(I)当x=2时,求证:BD⊥EG ;(II)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(III)当取得最大值时,求二面角D-BF-C的余弦值.]