已知(I)求数列{}的通项公式;(II)数列{}的首项b1=1,前n项和为Tn,且,求数列{}的通项公式bn.
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.(1)求椭圆的方程;(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
如图,四面体中,、分别是、的中点,(Ⅰ)求证:平面;(Ⅱ)求二面角的正切值;(Ⅲ)求点到平面的距离.
矩形的中心在坐标原点,边与轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线与,与,与的交点依次为.(1)以为长轴,以为短轴的椭圆Q的方程;(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).(3)设线段的(等分点从左向右依次为,线段的等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
已知数列的前项的和为, ,求证:数列为等差数列的充要条件是.
如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=(1)求||的最小值; (2)当||达到最小值时,与,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.