已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(1)证明: 为定值;(2)若△POM的面积为,求向量与的夹角;(3)证明直线PQ恒过一个定点.
已知函数. (Ⅰ)若,求的取值范围; (Ⅱ)证明:.
已知函数f(x)=(1+)sin2x+sin(x+)sin(x-). (1)当=0时,求f(x)在区间[,]上的取值范围; (2)当tan=2时,f()=,求的值.
在中,角所对的边分别为,且满足. (I)求角的大小; (II)求的最大值,并求取得最大值时角的大小.
(Ⅰ)①证明两角和的余弦公式;②由推导两角和的正弦公式 (Ⅱ)已知△ABC的面积 S=12,•=3,且 cosB=,求cosC.
(本小题12分)已知函数 (1)用五点法画出它在一个周期内的闭区间上的图象; (2)指出的周期、振幅、初相、对称轴; (3)说明此函数图象可由上的图象经怎样的变换得到.