已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(1)证明: 为定值;(2)若△POM的面积为,求向量与的夹角;(3)证明直线PQ恒过一个定点.
如图,已知底角为450的等腰梯形ABCD,底边BC长为7cm,腰长为,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出左边部分的面积y与x的函数解析式。
画出函数y=|x-1|的图象,并根据图象写出函数的单调区间,以及在各单调区间上,函数是增函数还是减函数。
若,,,求。
已知圆过定点,圆心在抛物线上,、为圆与轴的交点. (Ⅰ)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长. (Ⅱ)当圆心在抛物线上运动时,是否为一定值?请证明你的结论. (Ⅲ)当圆心在抛物线上运动时,记,,求的最大值,并求出此时圆的方程.
已知等比数列中,,公比,又恰为一个等差数列的第7项,第3项和第1项. (1)求数列的通项公式; (2)设,求数列