已知椭圆两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点. (1)求P点坐标; (2)求证直线AB的斜率为定值; (3)求△PAB面积的最大值。
.(本小题满分10分) 如图所示,在三棱锥中,,且。 (1)证明:; (2)求侧面与底面所成二面角的大小;
(本小题满分10分) 如图,矩形的两条对角线相交于点,边所在直线的方程为, 点在边所在直线上. (1)求边所在直线的方程; (2)求矩形外接圆的方程;
(本小题满分8分) 如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,冰淇淋会从杯子溢出吗?请用你的计算数据说明理由.
_
已知三条直线,直线和直线,且与的距离是 (1)求的值 (2)能否找到一点,使得点同时满足下面三个条件,①是第一象限的点;②到的距离是到距离的,③点到的距离与到的距离之比是,若能,求点的坐标,若不能,说明理由。
如图,在四边形中,垂直平分,且,现将四边形沿折成直二面角,求: (1)求二面角的正弦值; (2)求三棱锥的体积。