已知数列的前n项和满足:(a为常数,且). (Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求a的值;(Ⅲ)在满足条件(Ⅱ)的情形下,设,数列的前n项和为Tn .求证:.
已知函数(1)解不等式(2)若.求证:.
在直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点,直线的极坐标方程为.(1)判断点与直线的位置关系,说明理由;(2)设直线与曲线C的两个交点为A、B,求的值.
已知为半圆的直径,,为半圆上一点,过点作半圆的切线,过点作于,交圆于点,.(Ⅰ)求证:平分;(Ⅱ)求的长.
已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆C经过点.(1)求椭圆C的标准方程;(2)若线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.
已知函数.(1)当时,函数的图像在点处的切线方程;(2)当时,解不等式;(3)当时,对,直线的图像下方.求整数的最大值.