多项飞碟是奥运会的竞赛项目,它是由抛靶机把碟靶(射击的目标)在一定范围内从不同的方向飞出,每抛出一个碟靶,就允许运动员射击两次.一运动员在进行训练时,每一次射击命中碟靶的概率P与运动员离碟靶的距离S(米)成反比,现有一碟靶抛出后S(米)与飞行时间t(秒)满足S=15(t+1),(0≤t≤4).假设运动员在碟靶飞出后0.5秒进行第一次射击,且命中的概率为0.8,如果他发现没有命中,则通过迅速调整,在第一次射击后经过0.5秒进行第二次射击,求他命中此碟靶的概率?
已知定义域为R的函数是奇函数. (1)求的值; (2)若对任意的,不等式恒成立,求的取值范围.
设,,函数 (1)用五点作图法画出函数在一个周期上的图象; (2)求函数的单调递减区间和对称中心的坐标; (3)求不等式的解集; (4)如何由的图象变换得到的图象.
(本小题共13分)已知数列的前项和满足,,. (Ⅰ)如果,求数列的通项公式; (Ⅱ)如果,求证:数列为等比数列,并求; (Ⅲ)如果数列为递增数列,求的取值范围.
(本小题共14分)在平面直角坐标系中,椭圆:的一个顶点为,离心率为. (Ⅰ)求椭圆的标准方程; (Ⅱ)直线过点,过作的平行线交椭圆于P,Q两点,如果以PQ为直径的圆与直线相切,求的方程.
(本小题共13分)已知函数. (Ⅰ)求函数的极小值; (Ⅱ)过点能否存在曲线的切线,请说明理由.