P是平行四边形ABCD外的一点,Q是PA的中点,求证:PC∥平面BDQ.
如图,在四棱锥中,底面是边长为2的正方形,侧面底面,且为等腰直角三角形,,、分别为、的中点. (1)求证://平面; (2)若线段中点为,求二面角的余弦值.
已知抛物线的顶在坐标原点,焦点到直线的距离是 (1)求抛物线的方程; (2)若直线与抛物线交于两点,设线段的中垂线与轴交于点,求的取值范围.
数列的前项和为,且是和的等差中项,等差数列满足 (1)求数列、的通项公式 (2)设=,求数列的前项和.
已知向量向量记 (1)求函数的单调递增区间; (2)若,求函数的值域.
平面直角坐标系中,为原点,射线与轴正半轴重合,射线是第一象限角平分线.在上有点列,,在上有点列,,.已知,,. (1)求点的坐标; (2)求的坐标; (3)求面积的最大值,并说明理由.