如图,已知向量,可构成空间向量的一个基底,若,在向量已有的运算法则的基础上,新定义一种运算,显然的结果仍为一向量,记作.(1) 求证:向量为平面的法向量;(2) 求证:以为边的平行四边形的面积等于;(3) 将四边形按向量平移,得到一个平行六面体,试判断平行六面体的体积与的大小.
已知数列中,,,数列中,,且点在直线上.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的通项公式;(Ⅲ)若,求数列的前项和.
设函数,.(1)当时,函数在处有极小值,求函数的单调递增区间;(2)若函数和有相同的极大值,且函数在区间上的最大值为,求实数的值(其中是自然对数的底数).
已知函数.(1)当时,求函数在点处的切线方程;(2)若函数在上的图像与直线恒有两个不同交点,求实数的取值范围.
在等差数列,等比数列中,,,.(1)求;(2)设为数列的前项和,,,求.
已知直线的方程为,数列满足,其前项和为,点在直线上.(1)求数列的通项公式;(2)在和之间插入个数,使这个数组成公差为的等差数列,令,试证明.