已知离心率为的椭圆 的右焦点F是圆的圆心,过椭圆上的动点P作圆的两条切线分别交y轴于M,N(与P点不重合)两点.(1)求椭圆方程;(2)求线段MN长的最大值,并求此时点P的坐标.
已知函数在处有极值.(Ⅰ)求实数值; (Ⅱ)求函数的单调区间; (Ⅲ)令,若曲线在处的切线与两坐标轴分别交于,两点(为坐标原点),求的面积.
(10分) 设函数求证:(1); (2)函数在区间(0,2)内至少有一个零点;
函数f(x)=是定义在(-1,1)上的奇函数,且f=.(1)确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f(t-1)+f(t)<0.
设数列的前项和为,数列为等比数列,且,。(1)求数列和的通项公式; (2)设,求数列的前项和。
如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量。已知,,于处测得水深,于处测得水深,于处测得水深,求的余弦值。