观察给出的下列各式:(1);(2).由以上两式成立,你能得到一个什么的推广?证明你的结论.
已知,,均为锐角. (1)求; (2)求.
设M是圆上的动点,O是原点,N是射线OM上的点,若,求点N的轨迹方程。
设抛物线的准线与轴交点为,过点 作直线交抛物线与不同的点两点.(1)求线段中点的轨迹方程;(2)若线段的垂直平分线交抛物线对称轴与,求证:.
单调函数f(x)满足f(x + y)= f(x) + f(y),且f(1)=2,其定义域为R。 (1)求f(0)、f(2)、f(4)的值; (2)解不等式f(x2+ 3 x) < 8。
如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程