若,观察下列不等式:,,…,请你猜测将满足的不等式,并用数学归纳法加以证明。
(本小题满分14分)设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.(1)求椭圆的方程;(2)椭圆上一动点关于直线的对称点为,求的取值范围.
如图1,在直角梯形中,,,,为线段的中点.将沿折起,使平面平面,得到几何体,如图2所示.(Ⅰ) 求证:平面;(Ⅱ) 求二面角的余弦值.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表 (1) 求该校男生的人数并完成下面频率分布直方图;(2)估计该校学生身高(单位:cm)在的概率;(3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设表示所选3人中身高(单位:cm)在的人数,求的分布列和数学期望.
(本小题满分10分)选修4-5:不等式选讲设函数,其中.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式的解集为 ,求a的值.
(本题满分为12分)已知函数的图像过坐标原点,且在点处的切线的斜率是.(1)求实数的值; (2)求在区间上的最大值;