如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从孔流入,经沉淀后从孔流出,设箱体的长为米,高为米.已知流出的水中该杂质的质量分数与,的乘积成反比,现有制箱材料60平方米,问当,各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(,孔的面积忽略不计).
(本小题满分13分)已知函数 (Ⅰ)讨论函数的单调性; (Ⅱ)设.如果对任意,,求的取值范围.
(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.
(本小题满分13分)提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数. (Ⅰ)当时,求函数的表达式; (Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)
(本小题满分12分)已知等差数列满足:,.的前n项和为. (Ⅰ)求及; (Ⅱ)令(),求数列的前项和.
(本小题满分12分)如图,直三棱柱中,,是中点. (1)求证:平面; (2)当点在上什么位置时,会使得平面?并证明你的结论。