如图,平面平面,,,△是正三角形,则二面角的平面角的正切值为多少.
已知函数 f ( x ) = x 2 + x - 1 , α 、 β 是方程 f ( x ) = 0 的两个根( α > β ), f ` ( x ) 是 f ( x ) 的导数,设 a 1 = 1 , a n + 1 = a n - f ( a n ) f ` ( a n ) ( n = 1 , 2 , . . . ) (n=1,2,…),
(Ⅰ)求 α 、 β 的值;
(Ⅱ)已知对任意的正整数 n 有 a n > α ,记 b n = ln a n - β a n - α ( n = 1 , 2 , . . . ) ,求数列 { b n } 的前 n 项和 S n .
已知 a 是实数,函数 f ( x ) = 2 a x 2 + 2 x - 3 - a ,如果函数 y = f ( x ) 在区间 [ - 1 , 1 ] 上有零点,求实数 a 的取值范围。
如图所示,等腰三角形 △ A B C 的底边 A B = 6 6 ,高 C D = 3 .点 E 是线段 B D 上异于 B , D 的动点.点 F 在 B C 边上,且 E F ⊥ A B .现沿 E F 将 △ B E F 折起到 △ P E F 的位置,使 P E ⊥ A E . 记 B E = x , V ( x ) 表示四棱锥 P - A C F E 的体积。 (1)求 V ( x ) 的表达式; (2)当 x 为何值时, V ( x ) 取得最大值? (3)当 V ( x ) 取得最大值时,求异面直线 A C 与 P F 所成角的余弦值。
在直角坐标系 x O y 中,已知圆心在第二象限、半径为 2 2 的圆 C 与直线 y = x 相切于坐标原点 O .椭圆 x 2 a 2 + y 2 9 = 1 与圆 C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆 C 的方程; (2)试探究圆 C 上是否存在异于原点的点 Q ,使 Q 到椭圆的右焦点 F 的距离等于线段 O F 的长,若存在求出 Q 的坐标;若不存在,请说明理由.
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 x (吨)与相应的生产能耗 y (吨标准煤)的几组对照数据
(1) 请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出 y 关于 x 的线性回归方程 y = b ^ x + a ^ ; (3)已知该厂技术改造前 100 吨甲产品能耗为 90 吨标准煤.试根据(2)求出的线性回归方程,预测生产 100 吨甲产品的生产能耗比技术改造前降低多少吨标准煤? (参考数据: 3 × 2 . 5 + 4 × 3 + 5 × 4 + 6 × 4 . 5 = 66 . 5 )