已知数列{an}和{bn}满足:a1=,an+1=an+n-4,bn=(-1)n(an-3n+21),其中为实数,n为正整数.(1)证明:对任意实数,数列{an}不是等比数列;(2)证明:当≠-18时,数列{bn}是等比数列;(3)设Sn为数列{bn}的前n项和.是否存在实数,使得对任意正整数n,都有Sn>-12?若存在,求的取值范围;若不存在,说明理由.
(本小题共14分)已知椭圆的中心在原点,焦点在轴上,经过点且离心率.过定点的直线与椭圆相交于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.
(本小题共14分)已知函数在与处都取得极值.(Ⅰ)求的值及函数的单调区间;(Ⅱ)若对,不等式恒成立,求的取值范围.
(本小题共13分) 在平面直角坐标系中,平面区域中的点的坐标满足,从区域中随机取点. (Ⅰ)若,,求点位于第四象限的概率; (Ⅱ)已知直线与圆相交所截得的弦长为, 求的概率.
(本小题共14分)正方体的棱长为,是与的交点,为的中点.(Ⅰ)求证:直线∥平面;(Ⅱ)求证:平面;(Ⅲ)求三棱锥的体积.
如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知的横坐标分别为.