已知,a,b,c均为正数,且a+b+c=1.求证:++≥9.
按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 该校高2010级一班50名学生在上学期参加活动的次数统计如图所示.(I)求该班学生参加活动的人均次数;(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率.(III)从该班中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.
已知各项都不相等的等差数列的前六项和为60,且 的等比中项. (I)求数列的通项公式;(II)若数列的前n项和.
已知函数的导函数是,在处取得极值,且.(Ⅰ)求的极大值和极小值;(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断与的大小关系,并说明理由.
已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.(Ⅰ)求椭圆C的方程和离心率e;(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF平面EFDC,设AD中点为P.(Ⅰ)当E为BC中点时,求证:CP∥平面ABEF;(Ⅱ)设BE=x,当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.