已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求出曲线的方程.
用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?
已知函数f1(x)=sinx,且fn+1(x)=fn′(x),其中n∈N*,求f1(x)+f2(x)+…+f100(x)的值.
已知P(﹣1,1),Q(2,4)是曲线y=x2上的两点,求与直线PQ平行且与曲线相切的切线方程.
已知抛物线y=x2,求过点(﹣,﹣2)且与抛物线相切的直线方程.
求下列函数的导数: (1)y=+2x; (2)y=lgx﹣sinx; (3)y=2sinxcosx; (4)y=.