如图,在河的一侧有一塔CD=5m,河宽BC=3M,另一侧有点A,AB=4m,求点A与塔顶D的距离AD.
一个袋中装有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.若袋中共有10个球,(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望E().
)某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.(1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率;(3)求这支篮球队在6场比赛中胜场数的期望和方差.
在某次数学考试中,考生的成绩服从一个正态分布,即~N(90,100).(1)试求考试成绩位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?
设X~N(5,1),求P(6<X<7).
某市有210名初中学生参加数学竞赛预赛,随机调阅了60名学生的答卷,成绩列表如下:
(1)求样本的数学平均成绩及标准差;(精确到0.01)(2)若总体服从正态分布,求此正态曲线的近似方程.