两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?
生活富裕了,农民也健身啦,一天,一农民夫妇带着小孩共3人在新农村健身房玩传球游戏,持球者将球等可能的传给其他2人,若球首先从父亲传出,经过4次传球.(1)求球恰好回到父亲手中的概率;(2)求小孩获球(获得他人传来的球)的次数为2次的概率.
已知在△ABC中,角A,B,C的对边分别是a,b,c,满足,关于x的不等式x2cosC+4xsinC+6≥0对任意的x∈R恒成立.(1)求角A的值;(2)求f(C)=2sinC·cosB的值域.
已知函数(1)求曲线y=f(x)在(2,f(2))处的切线方程;(2)若g(x)=f(x)一有两个不同的极值点.其极小值为M,试比较2M与一3的大小,并说明理由;(3)设q>p>2,求证:当x∈(p,q)时,.
在平面直角坐标系xoy中,以点P为圆心的圆与圆x2+y2-2y=0外切且与x轴相切(两切点不重合).(1)求动点P的轨迹方程;(2)若直线mx一y+2m+5=0(m∈R)与点P的轨迹交于A、B两点,问:当m变化时,以线段AB为直径的圆是否会经过定点?若会,求出此定点;若不会,说明理由.
设数列{}满足:a1=2,对一切正整数n,都有(1)探讨数列{}是否为等比数列,并说明理由;(2)设