求证不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点.
(本小题满分8分)已知都是锐角,(Ⅰ)求的值(Ⅱ)求的值
(本小题满分14分)已知函数f(x)=alnx+x2(a为实常数).(Ⅰ)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值;
(本小题满分12分)假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
若由资料知,y对x呈线性相关关系,试求:(1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?
(本小题满分13分)已知二次函数f(x)满足:①在x=1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x+y=0平行. ⑴求f(x)的解析式- ⑵求函数g(x)=f(x2)的单调递增区间.
(本小题满分12分)有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.