直线l在两坐标轴上的截距相等,且P(4,3)到直线l的距离为,求直线l的方程.
在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。
)袋中装有大小相同的黑球、白球和红球共10个。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是(1)求袋中各色球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的分布列及数学期望Eξ和方差Dξ;
为了防止受污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值E(X).
已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.
有4个不同的球,四个不同的盒子,把球全部放入盒内(结果用数字表示).(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒不放球,有多少种放法?