已知函数f(x)=(x∈R),(1)判定函数f(x)的奇偶性;(2)判定函数f(x)在R上的单调性,并证明.
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC. (1)求证:AG∥平面PEC; (2)求AE的长; (3)求二面角E—PC—A的正弦值.
甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为. (1)求这一技术难题被攻克的概率; (2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金万元;若只有2人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元。设甲得到的奖金数为X,求X的分布列和数学期望。
在△ABC中,内角A,B,C所对边长分别为,,, . (1)求的最大值及的取值范围; (2)求函数的最值.
(本小题满分14分) 已知 (Ⅰ)求; (Ⅱ)判断并证明的奇偶性与单调性; (Ⅲ)若对任意的,不等式恒成立,求的取值范围。
(本小题满分12分)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,回答下列问题: (1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米空气的含药量降到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到进教室?