如图所示,设抛物线方程为x2="2py" (p>0),M为直线y=-2p上任意一点,过M 引抛物线的切线,切点分别为A,B. (1)求证:A,M,B三点的横坐标成等差数列; (2)已知当M点的坐标为(2,-2p)时,|AB|=4.求此时抛物线的方程.
已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC 沿CE折起到△D’EC的位置,使二面角D'-EC -B是直二面角。 (Ⅰ) 证明:BE⊥CD’; (Ⅱ) 求二面角D'-BC -E的余弦值,
甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛胜者得3 分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为 (1)求甲获第一名且丙获第二名的概率: (2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望。
已知,,函数 (1)求f(x)的最小正周期; (2)当时,求函数f(x)的值域.
(本小题满分14分) 已知数列中,a1=3,a2=5,其前n项和Sn满足 令 (Ⅰ)求数列的通项公式: (Ⅱ)若,求证:
.(本小题满分14分) 如图所示,在直角梯形ABCD中,,曲线段.DE上 任一点到A、B两点的距离之和都相等. (Ⅰ) 建立适当的直角坐标系,求曲线段DE的方程; (Ⅱ) 过C能否作-条直线与曲线段DE 相交,且所 得弦以C为中点,如果能,求该弦所在的直线 的方程;若不能,说明理由.