某公司利润y与销售总额x(单位:千万元)之间有如下对应数据:
(1)画出散点图;(2)求回归直线方程;(3)估计销售总额为24千万元时的利润.
(本小题满分12分)已知二阶矩阵有特征值及对应的一个特征向量,并且矩阵对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵 (2)求矩阵的另一个特征值及对应的一个特征向量的坐标之间关系 (3)求直线:在矩阵的作用下的直线的方程
(本小题满分12分)已知的第五项的二项式系数与第三项的二项式系数的比是14:3,求展开式中的常数项.
函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线3x+y+2=0. (1)求a,b的值; (2)求函数的极大值与极小值的差.
已知函数的最小正周期为 (1)求的值;(2)求函数f(x)的单调递增区间; (3)求函数f(x)在区间[0,]上的取值范围.
已知向量,=(1,2). (1)若,求tan的值; (2)若,,求的值.