如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(1)求证:PB⊥DM;(2)求BD与平面ADMN所成的角.
已知数列的前项和为,,,,其中为常数. (1)证明:; (2)是否存在,使得为等差数列?并说明理由.
如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°. (1)若PB=,求PA; (2)若∠APB=150°,求tan∠PBA.
已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为. (1)求的方程; (2)过点的直线与相交于,两点,与相交于,两点,且与同向. (ⅰ)若,求直线的斜率; (ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形.
已知数列满足,. (1)若为递增数列,且成等差数列,求的值; (2)若,且是递增数列,是递减数列,求数列的通项公式.
如图,在四棱锥中,底面是正方形,底面,, 点是的中点,,且交于点. (Ⅰ)求证:平面; (Ⅱ)求证:平面⊥平面; (Ⅲ)求二面角的余弦值.