如图所示,在正方体ABCD-A1B1C1D1中,E、F分别为CC1、AA1的中点,画出平面BED1F 与平面ABCD的交线.
甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下, 甲运动员
乙运动员
若将频率视为概率,回答下列问题, (1)求甲运动员击中10环的概率 (2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率 (3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及.
设的内角所对的边分别为且. (1)求角的大小; (2)若,求的周长的取值范围.
(本题满分12分)已知函数(为自然对数的底数). (1)求函数的最小值; (2)若,证明:.
(本题满分14分)设有抛物线C:,通过原点O作C的切线,使切点P在第一象限. (1)求m的值,以及P的坐标; (2)过点P作切线的垂线,求它与抛物线的另一个交点Q; (3)设C上有一点R,其横坐标为,为使DOPQ的面积小于DPQR的面积,试求的取值范围.
(本题满分14分)已知函数且 (1)试用含的代数式表示; (2)求的单调区间.