如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=" " 3∶1,过E、F、G的平面交AD于H,连接EH.(1)求AH∶HD;(2)求证:EH、FG、BD三线共点.
已知
化简
已知<<<, (Ⅰ)求的值.(Ⅱ)求.
已知向量a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),α∈(),且a⊥b. 求tanα的值;
设函数f(x)= x3-mx2+(m2-4)x,x∈R. (1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)已知函数f(x)有三个互不相同的零点0,α,β,且α<β.若对任意的x∈[α,β],都有f(x)≥f(1) 恒成立,求实数m的取值范围.