已知A(0,3)、B(-1,0)、C(3,0),求D点的坐标,使四边形ABCD为直角梯形(A、B、C、D按逆时针方向排列).
已函数是定义在上的奇函数,在上时(Ⅰ)求函数的解析式;(Ⅱ)解不等式.
对于集合M,定义函数,对于两个集合M、N,定义集合.已知,.(Ⅰ)写出与的值,(Ⅱ)用列举法写出集合;
已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数, e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
已知函数(1)若x=2为的极值点,求实数a的值;(2)若在上为增函数,求实数a的取值范围.
某商场预计2014年从1月起前个月顾客对某种商品的需求总量(单位:件)(1)写出第个月的需求量的表达式;(2)若第个月的销售量(单位:件),每件利润(单位:元),求该商场销售该商品,预计第几个月的月利润达到最大值?月利润的最大值是多少?(参考数据:)