已知,且,,求的值。
(本题满分12 分)已知数列为等比数列,且首项为,公比为,前项和为.(Ⅰ)试用,,表示前项和;(Ⅱ)证明(Ⅰ)中所写出的等比数列的前项和公式。
(本题满分12 分)(1)计算, (2)已知,求sin的值。
设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-对称,且f′(1)=0.(1)求实数a,b的值;(2)讨论函数f(x)的单调性,并求出单调区间 。
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=. (1)求证:BD⊥平面PAC; (2)求二面角P—CD—B余弦值的大小 (3)求点C到平面PBD的距离.
(本题满分13分) 已知椭圆C的两焦点分别为,长轴长为6,⑴求椭圆C的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。