(本小题满分13分已知相的中心在原点,焦点在x轴上,离心率为,点F1、F2分别是椭圆的左、右焦点,直线x=2是椭圆的准线方程,直线与椭圆C交地不同的两点A、B。 (I)求椭圆C的方程;(II)若在椭圆C上存在点Q,满足(O为坐标原点),求实数的取值范围。
在每年的春节后,某市政府都会发动公务员参与到植树活动中去.为保证树苗的质量,该市林管部门在植树前,都会在植树前对树苗进行检测.现从甲乙两种树苗中各抽测了10株树苗的高度,量出树苗的高度如下(单位:厘米):甲:乙:(1)根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;(2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入按程序框图进行的运算,问输出的大小为多少?并说明的统计学意义.
已知,,且(1)求函数的单调增区间;(2)证明无论为何值,直线与函数的图象不相切.
某食品企业一个月内被消费者投诉的次数用表示,椐统计,随机变量的概率分布如下:
(1)求a的值和的数学期望;(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
已知.(1)求的值;(2)若是第三象限的角,化简三角式,并求值.
(本小题满分14分)已知函数.(l)求的单调区间和极值;(2)若对任意恒成立,求实数m的最大值.