(本小题满分13分已知相的中心在原点,焦点在x轴上,离心率为,点F1、F2分别是椭圆的左、右焦点,直线x=2是椭圆的准线方程,直线与椭圆C交地不同的两点A、B。 (I)求椭圆C的方程;(II)若在椭圆C上存在点Q,满足(O为坐标原点),求实数的取值范围。
已知直线与椭圆相交于、两点,是线段上的一点,,且点M在直线上(1)求椭圆的离心率;(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程。
某商品每件成本9元,售价30元,每星期卖出432件。如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比。已知商品单价降低2元时,一个星期多卖出24件。(1)将一个星期的商品销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大?
已知点,,在抛物线()上,的重心与此抛物线的焦点F重合(如图)(1)写出该抛物线的方程和焦点F的坐标; (2)求线段BC中点M的坐标;(3)求BC所在直线的方程.
已知集合在平面直角坐标系中,点M的坐标为(x,y) ,其中。 (1)求点M不在x轴上的概率;(2)求点M正好落在区域上的概率。
(本小题满分12分)高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
(1)根据上面图表,①、②、③、④处的数值分别是多少?(2)在坐标系中画出的频率分布直方图;(3)根据题中信息估计总体平均数,并估计总体落在中的概率。