已知球O1,球O2,球O3的体积比为1∶8∶27,求它们的半径比.
三棱柱中,分别是、上的点,且,。设,,.(Ⅰ)试用表示向量;(Ⅱ)若,,,求MN的长.。
设命题:方程表示的图象是双曲线;命题:,.求使“且”为真命题时,实数的取值范围.
已知椭圆.,分别为椭圆的左,右焦点,, 分别为椭圆的左,右顶点.过右焦点且垂直于轴的直线与椭圆在第一象限的交点为.(1) 求椭圆的标准方程;(2) 直线与椭圆交于,两点, 直线与交于点.当直线变化时, 点是否恒在一条定直线上?若是,求此定直线方程;若不是,请说明理由.
已知函数(a∈R).(1)当时,求的极值;(2)当时,求单调区间;(3)若对任意及,恒有成立,求实数m的取值范围.
设数列满足条件:,,,且数列是等差数列.(1)设,求数列的通项公式;(2)若, 求;(3)数列的最小项是第几项?并求出该项的值.